SIRT1 deacetylates RORγt and enhances Th17 cell generation

نویسندگان

  • Hyung W. Lim
  • Seung Goo Kang
  • Jae Kyu Ryu
  • Birgit Schilling
  • Mingjian Fei
  • Intelly S. Lee
  • Amanuel Kehasse
  • Kotaro Shirakawa
  • Masaru Yokoyama
  • Martina Schnölzer
  • Herbert G. Kasler
  • Hye-Sook Kwon
  • Bradford W. Gibson
  • Hironori Sato
  • Katerina Akassoglou
  • Changchun Xiao
  • Dan R. Littman
  • Melanie Ott
  • Eric Verdin
چکیده

The balance of effector and regulatory T cell function, dependent on multiple signals and epigenetic regulators, is critical to immune self-tolerance. Dysregulation of T helper 17 (Th17) effector cells is associated with multiple autoimmune diseases, including multiple sclerosis. Here, we report that Sirtuin 1 (SIRT1), a protein deacetylase previously reported to have an antiinflammatory function, in fact promotes autoimmunity by deacetylating RORγt, the signature transcription factor of Th17 cells. SIRT1 increases RORγt transcriptional activity, enhancing Th17 cell generation and function. Both T cell-specific Sirt1 deletion and treatment with pharmacologic SIRT1 inhibitors suppress Th17 differentiation and are protective in a mouse model of multiple sclerosis. Moreover, analysis of infiltrating cell populations during disease induction in mixed hematopoietic chimeras shows a marked bias against Sirt1-deficient Th17 cells. These findings reveal an unexpected proinflammatory role of SIRT1 and, importantly, support the possible therapeutic use of SIRT1 inhibitors against autoimmunity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of RORγt Enhances Pulmonary Inflammation after Infection with Mycobacterium Avium

Mycobacterium avium complex (MAC) is the most common cause of nontuberculous mycobacterial disease in humans. The role of Th17 immunity in the pathogenesis of intracellular bacteria, such as MAC, is not currently understood. Transcription factor RAR-related orphan receptor gamma t (RORγt) is known as the master regulator for Th17 cell development. Here, we investigated the role of RORγt in host...

متن کامل

Foxo1 Is a T Cell-Intrinsic Inhibitor of the RORγt-Th17 Program.

An uncontrolled exaggerated Th17 response can drive the onset of autoimmune and inflammatory diseases. In this study, we show that, in T cells, Foxo1 is a negative regulator of the Th17 program. Using mixed bone marrow chimeras and Foxo1-deficient mice, we demonstrate that this control is effective in vivo, as well as in vitro during differentiation assays of naive T cells with specific inhibit...

متن کامل

Increased expression of IRF8 in tumor cells inhibits the generation of Th17 cells and predicts unfavorable survival of diffuse large B cell lymphoma patients

The immunological pathogenesis of diffuse large B cell lymphoma (DLBCL) remains elusive. Searching for new prognostic markers of DLBCL is a crucial focal point for clinical scientists. The aim of the present study was to examine the prognostic value of interferon regulatory factor 8 (IRF8) expression and its effect on the development of Th17 cells in the tumor microenvironment of DLBCL patients...

متن کامل

Cutting edge: Ubiquitin-specific protease 4 promotes Th17 cell function under inflammation by deubiquitinating and stabilizing RORγt.

RORγt is a key transcription factor that controls the development and function of inflammatory Th17. The mechanisms that regulate RORγt stability remain unclear. We report that Th17 cells highly express the deubiquitinase ubiquitin-specific protease (USP)4, which is essential for maintaining RORγt and Th17 cell function. Inhibition of the catalytic activity of USP4 with vialinin A, a compound d...

متن کامل

SIRT1 suppresses adipogenesis by activating Wnt/β-catenin signaling in vivo and in vitro

Sirtuin 1 (SIRT1) regulates adipocyte and osteoblast differentiation. However, the underlying mechanism should be investigated. This study revealed that SIRT1 acts as a crucial repressor of adipogenesis. RNA-interference-mediated SIRT1 knockdown or genetic ablation enhances adipogenic potential, whereas SIRT1 overexpression inhibits adipogenesis in mesenchymal stem cells (MSCs). SIRT1 also deac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 212  شماره 

صفحات  -

تاریخ انتشار 2015